N94-14637
Parallel Methods for Dynamic Simulation :
of Multiple Manipulator Systems

Scott McMillan P. Sadayappan! David E. Orin

Department of Electrical Engineering
tDepartment of Computer and Information Science
The Ohio State University
Columbus, OH 43210

Abstract

In this paper, efficient dynamic simulation algorithms for a system of m manipulators,
cooperating to manipulate a large load, are developed; and their performance, using two
possible forms of parallelism on a general-purpose parallel computer, is investigated. Onc
form, temporal parallelism, is obtained with the use of parallel numerical integration methods
[1]. A speedup of 3.78 on four processors of a CRAY Y-MP8 was achieved with a parallel
four-point block predictor-corrector method for the simulation of a four manipulator system.
These multi-point methods suffer from reduced accuracy, and when comparing these runs
with a serial integration method, the speedup can be as low as 1.83 for simulations with the
same accuracy. To regain the performance lost due to accuracy problems, a second form of
parallelism is employed. Spatial parallelism allows most of the dynamics of each manipulator
chain to be computed simultaneously. Used exclusively in the four processor case, this form
of parallelism in conjunction with a serial integration method results in a speedup of 3.1 on
four processors over the best serial method. In cases where there are either more proccssors
available or fewer chains in the system, the multi-point parallel integration methods arc
still advantageous despite the reduced accuracy because both forms of parallelism can then
combine to generate more parallel tasks and achieve greater effective speedups. This paper
also includes results for these cases.

1. Introduction

With increases in the structural complexities of today’s systems, such as multiple manip-
ulators, multilegged vehicles, and flexible robots, parallelization of the dynamic algorithms
for these systems must be considered in an effort to improve computational rates. With
significant speedups over previous implementations, real-time performance of graphic ani-
mation would make man-in-the-loop remote control of these systems feasible [2]. And with
super-real-time simulation (computing seconds of motion in milliseconds), an entirely new
approach to on-line robotic control using predictive simulation for planning is within range
[3]. One promising area of research which is striving to achieve these computational rates
focuses on the use of parallel algorithms.

In previous work, fine-grain parallel algorithms have been developed for robot dynamics
computations. Some require the use of special-purpose architectures to implement the fine-
grain parallelism of the computations required for a single-chain system [4, 5, 6, 7]. Others
decompose the algorithm into groups of concurrent tasks that are scheduled on a number of

267

tightly coupled parallel processors to produce speedup [8, 9]. All of these algorithms, while
designed to perform well on specific parallel architectures, are usually much less efficient
when implemented on available general-purpose parallel machines with a limited number of
processors. These systems were not designed to handle the large amount of interprocessor
communication and synchronization that is required by the fine-grain tasks.

In our work, parallel algorithms which run efficiently on existing general-purpose parallel
computers are investigated. In the initial stage of this research, the dynamic algorithms
required to simulate a single, open-chain robotic manipulator were effectively parallelized
[1). The approach used a parallel block predictor-corrector integration method to achieve
a temporal parallelism which enabled the forward dynamics problem to be computed for
multiple points in time simultaneously. In this paper, the work is extended to simulate
systems of multiple manipulators that are cooperating to manipulate a large load. In this
case, a second form of parallelism which corresponds to the system’s structural parallelism
is explored. Called spatial parallelism, it allows most of the dynamics of the individual
chains to be computed in parallel as well.

This work shows that there are various costs associated with the two forms of paral-
lelism which affect their efficiency. With temporal parallelism, the accuracy of the parallel
integration methods is lower than the corresponding serial methods. As a result, smaller
stepsizes must be used, and hence, more computation must be performed with the tempo-
ral parallel methods to achieve the same accuracy. With spatial parallelism, most of the
dynamics may be computed in parallel; however, a serial portion of the algorithm which
computes the dynamics of the common load reduces the overall efficiency of this parallelism
as well. The advantage of these methods is that they may be combined by implementing the
spatial parallelism within each parallel integration task to gain even greater speedups. Our
results show the effects of reduced efficiency of both methods and how they are combined
to gain the greatest speedups on varying numbers of processors.

In the following section, the algorithm to simulate the multiple manipulator system
is developed. In this development, the dynamics used in the previous work for a single
manipulator are extended and the spatial parallelism in this algorithm is presented. In
Section 3, the block predictor-corrector integration methods are presented which provide
various amounts of temporal parallelism in the simulation problem. Section 4 discusses
how both forms of parallelism are combined and implemented on a general-purpose parallel
computer. This algorithm is then implemented on the CRAY Y-MP8/864, and the speedup
results are given in Section 5 for various configurations of the simulation system including
spatial parallelism only, temporal parallelism only, and a combination on various numbers
of the CRAY’s processors. Finally, a summary and conclusions are presented in Section 6.

2. Parallel Algorithm for Multiple Manipulator Dynamic Equations

In this section, an efficient dynamic simulation algorithm for a multiple, closed-chain
manipulator system is developed, and the spatial parallelism in the algorithm is investi-
gated. The system contains m manipulators, each with N degrees of freedom, that are

268

rigidly grasping a common load, called the reference member. Each simple, closed chain
(manipulator) is governed by the dynamic equations of motion for a single chain. Numbering
the chains in the system 1 through m, the equation for each chain is given as follows:

e = Hi(qw)de + Crlar, ax) + Ge(aw) + I (qi)fe forallk=1,...,m, (1)
where

Tk N x 1 vector of torques/forces of the joint actuators,

Q% Gk, gk N x 1 vectors of joint positions, rates, and accelerations,

H, N x N symmetric, positive definite inertia matrix,

Cy N x 1 vector specifying centrifugal and coriolis effects,

Gy N x 1 vector specifying the effects due to gravity,

Jr 6 x N Jacobian matrix, and

1 6 x 1 force exerted by the tip of chain k on the reference member.

The “for all” in Eq. (1) indicates that the equation may be computed for all chains in parallel
provided the required quantities are known. Since we are interested in the solution to the
Forward Dynamics (or simulation) problem, the state of the system, consisting of joint
positions and rates, and the input joint torques/forces are given. The joint accelerations for
each chain must then be computed. Lilly and Orin [10] present an efficient serial algorithm
for Forward Dynamics which is the basis for the parallel implementation used in this paper.

By grouping some terms from Eq. (1) and solving for the joint accelerations, we obtain
the following equation:

Qk = Gkopen — Hp'J{fe forallk=1,...,m, (2)

where §x,,., is the vector of joint accelerations for chain & if it were not contacting the
reference member causing the tip force to be zero. This is called its open-chain solution
which was implemented in {1]. Note that this quantity, as well as HEIJZ,(lepends only on the
system state and input joint torques/forces and may be computed from known quantities.

An equivalent operational-space formulation for the dynamics of a closed-chain manip-
ulator can be found by using the following relationship:

Xk = Jiqs, (3)

where x; is the Cartesian velocity of the tip of the manipulator. Taking the time derivative
of both sides yields the equation for the closed-chain acceleration of the tip:

% = Jeqn + Jidr, (4)
and substituting from Eq. (2) yields the following:

R = Kipn — Af'f, forallk=1,...,m, (5)
where

ikopen = J'qu + Jkﬁkopen’ and (6)

269

A = (BEFIT)T (7)

The quantity, Xk,,..., is the acceleration of the tip of chain k if it were open, and Ay is the
operational space inertia matrix [11]. Both quantities may be computed given the current
state of the system and the input. The physical interpretation of Ay is an inertial quantity
which combines the dynamic properties of the chain and projects them to its tip. It is
the physical resistance that is “felt” when a force is exerted on the tip, and it defines the
relationship between the force that is applied to the tip, and the resulting acceleration of
the tip of the chain, X4. The advantage to using these operational space quantities is that
the matrix sizes are constant regardless of the number of degrees of freedom in the chain.

With the chains attached with a fixed grip to the reference member, the accelerations
of the tips of each chain, at an appropriate point attached to the end-effector, are the same
and are equal to the reference member acceleration, a,. As aresult, Eq. (5) can be rewritten
as follows:

a, = Xkgpen — A;lfk forall k =1,...,m. (8)

Now the dynamic behavior of the reference member can be determined using a spatial
force balance equation. This states that the sum of the spatial forces exerted by the tips of
the chains and any other external forces (including gravity) is related to the acceleration of
the reference member through its inertia. This may be written as follows:

§::ﬂ:+'gr = Irar+'bra (9)
k=1

where

g 6 x 1 vector specifying the force of gravity exerted on the reference member,
a, 6 x 1 acceleration vector of the reference member,
I, 6 x 6 spatial inertia of the reference member [10],

and the last term, b,, is a spatial vector specifying the bias force due to the spatial velocity
of the reference member.

In this work, we also assume that the chains are not in singular configurations, and
consequently, all of the A;l matrices are non-singular. Therefore, the unknown force terms,
fi, may be isolated in Eq. (8) and substituted into Eq. (9). After collecting terms, the
following equation results:

[I, +> Ak} a, = [gr = b+ Y ArKigp.n| - (10)
k=1 k=1

This equation states that the sum of all the inertias of the system multiplied by the reference
member acceleration is equal to the sum of all the forces that are exerted on the reference
member. The acceleration term, a,, may now be determined from this linear system of

270

chaink-1 chain k chain k+1

————— o T T T T aen,
: OCDx-1 | : Open—Chain Dynamics (OCD,) : : OCDyu1 |
| I | \
| I | Inverse Inertia Matrix/ 'l | l
| | | Dynamics Jacobian | | [
IR .
l
| I ‘ Open—Chain Operational Space | I ‘
J | | Acceleration Inertia Matrix, A | | |
	Equation (6) Equation (7) P	
l]	
	I]	

Reference Member Acceleration (RMA)
Equation (10)

—] ——_————T—_——————— - s~y
: CCD,, % : Closed—Chain Dynamics (CCD,) : : CCD,., Il
: | : Tip Forces I : |
| { | Equation (8) " | ll
| l l

| : | Closed—Chain Accelerations : | :
] I | Equation (2) | | |
L 5 l 4 L &

Figure 1: Closed-Chain Dynamics Algorithm.

cquations using any linear system solver (in this case Cholesky decomposition can be used}.
Finally a, is substituted back into Eq. (8) to determine the tip forces, fi., on each chain and
this can then be used to determine the joint accelerations from Eq. (2).

The flowchart in Figure 1, outlines the steps in the algorithm to compute the desired ac-
celerations. This constitutes the “derivative computation” which uses the state information
that is provided by a numerical integration routine. The additional computation required
for the closed chain dynamics that were not present in the open-chain algorithm used in
[1] is indicated with the appropriate equation numbers except for the computation of the
manipulator Jacobian. With slight modification to the inertia matrix routine that was used
in [1], this matrix may be computed as well. The algorithm for this computation can also
be found in [12]. Note that the Open-Chain Dynamics (OCD) and Closed-Chain Dynam-

271

Processor Number (Chain):

1) @ (m)
CS, CS 2 s CSm
[__OCDn__|
synchronization barrier B
wait for event j

Figure 2: Spatial Parallelism in Multiple-Chain Dynamic Equations (Serial RMA Compu-
tation).

ics (CCD) blocks are repeated for each chain in the system, while the Reference Member
Acceleration (RMA) is performed once for a given derivative evaluation. This implies that
the OCD and CCD computations for each chain may be executed in parallel.

Figure 2 shows how this algorithm, along with a numerical integration method, would
be implemented on a general-purpose parallel computer. The CS (Compute State) block
consists of the integration method that is used to compute the state of the required chain,
and will be discussed in the next section. A processor synchronization is required after the .
parallel OCD computation in order to collect the chains’ operational space inertia matrices
and open-chain accelerations before the serial RMA computation is performed. In Figure 2
this is shown as a barrier which holds the parallel tasks which have completed the OCD
section until all m of them have finished. After the serial computation is completed by one
processor, it signals the other processors to continue with the parallel CCD computations.
This is accomplished by posting an event signal for which the other processors are waiting.

This computation can be modified to remove the event synchronization as shown
in Figure 3. This is accomplished by allowing each task to maintain its own “copy” of the
reference member information and perform the same computation on all of them. While
this introduces redundant computation, it can actually reduce the wallclock time because a
costly synchronization has been removed and the same time that was spent waiting for one
processor to perform the RMA calculation is now used to perform it on ali of the processors.
This algorithm is then used within the framework of various parallel integration methods
that are described in the next section.

272

Processor Number (Chain):
¢Y)

2

i

CS2

(m)

CSm_ |
_OCDa _]

synchronization barrier

CCD2

1
[_ccpa |

|

[RMA]

CCD m

|

Figure 3: Spatial Parallelism in Multiple-Chain Dynamic Equations (Redundant Parallel
RMA Computation).

3. Parallel Integration Methods

Many different algorithms exist to perform numerical integration. One set of algorithms
which has shown in the past to be readily parallelizable are predictor-corrector methods.
The standard serial algorithm, commonly abbreviated PECE, consists of two pairs of steps
which correspond to the letters of the abbreviation. The steps consist of Predicting the next
state and Evaluating the derivative based on this prediction, and then Correcting the state
with a corresponding derivative Evaluation. The derivative evaluations required in both
steps to determine the accelerations were presented in the last section, and the methods for
predicting and correcting the states are described here.

In this paper, fifth-order methods are used because they provide an adequate tradeofl
between accuracy, which tends to increase with order, and stability, which tends to decrease
with order. Figure 4 shows the quantities needed and computed in both steps of the serial
method. This method, usually called PECE5, will be referred to as BIPC5 in the rest of
this paper to indicate a one-point block method which utilizes fifth-order predictor-corrector
formulas. The predictor step, shown in Figure 4(a), uses a linear combination of five past
derivative values, f_y4, ..., fo (hence it is fifth-order) and the state at the most recent point
in time, yo to predict the state of the system (joint and reference member positions and
rates) at the next point in time, y;. With this, the algorithm in the previous section can
be used to compute the derivative (joint and reference member accelerations) at this point,
f7, which is based on the predicted state. To correct the state in the second step of the
method, the quantities shown in Figure 4(b) are used. In this step, the “oldest” derivative
value is dropped and the linear combination used to compute the corrected state, yi, now
includes the new predicted derivative value. The same state quantity, yo, is used rather

273
Q -

Given: f, f, Yo.f,

{ e— - ——e— —03:)—7
t
Computed: yl

Given: f, f, fi Y.f rlp
an
(b) —_—t *o—— & — 0 ¢ — o} —=
t
Computed: y 1c' ff

Figure 4: Serial BIPC5 Integration: (a) predictor step, (b) corrector step.

Given: f, f, f, f,

(a) @ e —
Computed:
Given: yo%fp \rp
(b) ! I - o — e @
. l
Computed: U S AN A AN v, .0,

Figure 5: Four-Point Parallel B4PC5 Integration: (a) predictor step, (b) corrector step.

than the predicted one for reasons of stability and accuracy of the method. Finally, the
corrected derivative value is computed using y§. Then in the next iteration of the method,
the values are shifted and four old derivative values and the new corrected derivative and
state values are used.

A parallel version of this method called the block predictor-corrector method was first
formulated by Birta and Abou-Rabia [13] and used in our previous work [1]. The fifth-
order version of this method, B4PC5, is shown in Figure 5. In this method, a block of
four points are computed in parallel during a single iteration. Each processor is responsible
for computing the required quantities at a single point in the block. In the predictor step
shown in Figure 5(a), each processor computes the predicted value for its point using the
same information (but with a different linear combination) in parallel. Then each uses

274

Given: f,

(a)

Computed:

Given: f, L Y.0 ff f:

[

c

Computed: A M A

Figure 6: Two-Point Parallel B2PC5 Integration: (a) predictor step, (b) corrector step.

the dynamics algorithm to compute the derivative at its point in parallel as well. In the
corrector step, an entire block of old derivative values are discarded in favor of the predicted
ones as shown in Figure 5(b). Once the processors have swapped the derivative information
from the predictor step, correction and subsequent derivative evaluation can again be done
in parallel.

The B4PC5 method offers a way to simulate the system using four processors in parallel.
Because the method extrapolates farther from the known values in the predictor step, it
is subject to larger errors for a given stepsize. Also, when both forms of parallelism are
combined in the next section, the number of parallel tasks may exceed the number of
processors available. For these reasons, we developed a two-point parallel method called
B2PC5 which lies between the two methods described thus far in terms of parallelism and
accuracy. This method is shown in Figure 6. Instead of predicting four points as in the
B4PC5, it only predicts two new points and thus can be implemented in parallel on two
processors. The coefficients for both steps of this method were computed using the method
of undetermined coefficients so that the resulting method is fifth-order as well.

The structure of the temporal parallelism for a single block of the parallel integration
methods presented in this section is shown in Figure 7. The PE (compute Predicted state
and Evaluate the derivative) and CE (compute Corrected state and Evaluate the derivative)
blocks in this figure make up the predictor and corrector steps in these methods along with
the derivative evaluations described in the previous section. There are p parallel tasks which
correspond to the number of block points computed by the method during a single iteration.
A single column of blocks represents the computation of the solution of the entire m-chain
system for a specific point in time on one of p processors. Barriers are used to synchronize
these parallel tasks after each derivative evaluation so that state and derivative information
may be exchanged. An event is also used so that a small amount of serial processing may
be performed by a single processor before starting the next integration iteration.

275

Processor Number (Block Point):
(2) (P

1))
' |
E
|
‘ |

r synchronization barrier

synchronization barrier

Shift Blocks

— .r wait for event

-

Figure 7: Temporal Parallelism in Dynamic Simulation.

4. Implementation of Combined Parallelism

Both forms of parallelism, spatial and temporal, can be combined by introducing the
spatial parallelization of the derivative evaluations in Figure 3 into the individual PE/CE
computational blocks of Figure 7. In this case, the CS (Compute State) blocks of Figure 3
become the predictor or corrector equations of the desired integration method. A modi-
fication is then made to decrease the required synchronization between all of the tasks to
improve the performance. This modification is made to the barriers and events associated
with the temporal parallelism. Because the integration of the state of each chain depends
only on its own values at all of the block points, the temporal barriers are broken apart
so that each one only synchronizes with the processors associated with the same chain.
In some sense, these temporal synchronization points have been spatially parallelized. In
addition, the serial Shift Blocks task can also be spatially parallelized.

Figure 8 shows the resulting implementation which consists of as many as mp paral-
lel tasks. Also included in this figure are the synchronization commands that are used in
the implementation on the CRAY Y-MP8/864. The simulation code was written in FOR-
TRAN (Version 5.0 running under UNICOS Release 6.0) using macrotasking commands to
implement the parallelism. The BARSYNC commands correspond to the synchronization
barriers and the argument supplied to this command corresponds to the number of parallel
tasks that must be synchronized by it. Finally, the EVPOST-EVWAIT commands pro-
vide the mechanism by which certain processors are suspended while others perform serial
operations.

In order to examine the eflects of various configurations on the parallelism (taking the

276

T

Processor Number: (Block Point, Chain)

an (12 - (1m 2n @2 - 2Qm (. (P2 - ()

S [-
[BARSYNC(m)_] BARSYNC(m) | ce [BARSYNC(m)]
1
ﬁ

I
' | 1
1

| BARSYNC(p)
l I ! | l
BARSYNC(p) _]
! L1 9 L
[BARSYNC(p)]
‘ SN S - FR—

) BARSYNC(m) [BARSYNC(m) |

§ | l ' 1 1
I BARSYNC(p)]
1 | ¥ l I
[BARSYNC(p) 1
Y ! . L ‘
r BARSYNC(p)]

[EVPOST|———1 —— EVWAIT)
1 l |
EVPOST}- + — ——— - EVWAIT |

@‘QLEF————————[‘ ..EVWAITl | ‘]
Y ! K Y

Figure 8: Structure of Combined Spatial and Temporal Parallelism.

number of integration block points, number of chains, and number of physical processors
into account), a mechanism was included in the implementation which allows the user to
specify the number of desired parallel tasks along both the temporal and spatial dimensions
of the simulation regardless of the number of chains and block points. These numbers are
denoted by m and p, respectively, and are used in place of m and p in Figure 8 when
referring to the number of actual parallel computational blocks. With this mechanism,
for example, the required computation could be paired off and a single processor could be

277

Table 1: Speedup Results for B4PC5.

Processors | Chain | Integration T
Requested | Tasks, m | Tasks, p (sec.) Sy
1 7 1 1 0.241]| 1.00
4 1 4 0.0637 || 3.78
2 2 0.0668 || 3.61
4 1 0.0731 || 3.30
8 2 4 0.0390 || 6.18
4 2 0.0417 }j 5.78

responsible for the computations of two chains (or two block points, or both} instead of
Just one. This would allow the computation of a larger system, in which mp exceeded the
number of processors, to be efficiently mapped to smaller parallel machines. In order to
maintain the load balance, however, the specified partitions in both dimensions should be
integer divisors of the total number of block points and chains, respectively. Results for
various partitions of the computation using this method are given in the next section.

5. Results

With the parallel algorithm described in the last section, a system consisting of four
PUMA 560 manipulators was simulated. A test trajectory with a duration of one second
was generated which consisted of lifting a 4kg object 0.8 meters straight up. Then an
appropriate joint torque profile was computed which, when applied to the joints of the
manipulators, would produce the desired motion. These torques were used as input into
the simulator, and the error in the final position of the reference member was used as a
measure of accuracy for the various integration methods. Only this value was reported for
brevity and also its accuracy was representative of the accuracy of the rest of the states in
the system.

The simulation was then executed using the B4PC5 integration method on 1, 4, and
8 of the Y-MP’s eight processors. Using the mechanism for partitioning the computation
among existing processors, the block point and chain computations were partitioned singly
(one chain and one block point per processor), in pairs (two chains and two blocks points),
all together, or any useful combination thereof. A fixed integration stepsize was used and
varied over a number of runs so that a profile of execution time versus error was produced.
To get a fair comparison of relative performance between the different integration methods
in later experiments, an estimate of the execution time, T, required to achieve an error of
1076 meters was reported in Table 1.

Examining these execution times for a given number of processors, it can be seen that
they increased as the number of temporal parallel tasks, p, decreased. When p is less
than four, the full amount of temporal parallelism provided by this integration method

278

[H

Table 2: Accuracy Performance for Various Configurations.

F Processors | Chain | Integration | Block T

Requested Tasks, m Tasks, p Size (sec.) Sy Sa St
1 1 1 4 0.241 1.00 | 0.485 | 0.485

2 0.152 1.00 | 0.770 | 0.770

1 0.117 |} 1.00 | 1.00 | 1.00

4 1 4 4 0.0637 |[3.78 | 0.485 | 1.83

2 2 4 0.0668 || 3.61 | 0.485 | 1.75

2 0.0444 || 3.42 | 0.770 | 2.63

4 1 4 0.0731 || 3.30 | 0.485 | 1.60

2 0.0463 || 3.28 | 0.770 | 2.53

1 0.0377 {{ 3.10 | 1.00 | 3.10

8 2 4 4 0.0390 || 6.18 | 0.485 | 3.00

4 2 4 0.0417 || 5.78 | 0.485 | 2.80

2 0.0295 {| 5.15 | 0.770 | 3.97

is not being fully utilized. As a result, increased numbers of redundant reference member
acceleration (RMA) calculations are being performed by each processor in an effort to avoid
the extra synchronization point that was discussed at the end of Section 2. Consequently,
the best speedups due to parallelization, S, were achieved by using the greatest amount of
temporal parallelism which was as high as 3.78 on four processors. Runs were also made
while requesting all eight of the Y-MP’s processors and a speedup of 6.18 was still achieved
despite an inability to gain dedicated use of these processors in our multi-user environment.

When p was less than four, simulations using an integration method with a smaller block
size, such as B2PC5 or serial BIPC5, were also tried. Because these methods compute
fewer points per iteration, the cost that is incurred is an increased number of iterations
(and hence, parallel task synchronizations) than the B4APC5 method for a given integration
stepsize. However, the overall efficiency of these methods increased because they were more
accurate. This resulted in fewer iterations and less execution time for a given amount of
error. The complete set of results using the various integration block sizes as well as parallel
counfigurations is shown in Table 2.

In this table, S, is the speedup for a given method over the serial runtime using the
same integration method. Since there is an accuracy loss associated with the larger block
methods a speedup due to algorithmic changes, S, is also reported. This corresponds to the
amount of time relative to the BIPC5 method that is required by the methods to compute
the trajectory with a given error. Based on the serial results for the three integration
methods, the traditional serial method, B1PC5, took less than half the time to simulate
the trajectory to the desired accuracy as the B4PC5, and the performance of B2PC5 fell in
between. The last column shows the total effective speedup of the various configurations.
This is based on the time required for the method to simulate the trajectory to the desired
accuracy as compared to the best serial time which was exhibited by the BIPCS method,

279

and it is equal to the product of 5§, and S,. When compared with the best integration
methods the 5, speedups obtained with the B4PC5 method must therefore be cut in about
one-half, and the B2PC5 speedups are reduced by approximately 23%.

Therefore, the best effective speedups were obtained using the integration method with
the smallest block size while partitioning the computation so that the number of parallel
tasks was equal to the number of processors. Since the system had four chains, the serial
B1PC5 method was the best on four processors and the resulting speedup was 3.1. On
eight processors, where the serial method could not be used and still have eight parallel
tasks, the B2PC5 method showed the greatest speedup at 3.97. From these results it would
appear that the B4PC5 has no advantage. However, if a system with a smaller number of
chains is to be simulated, this method would allow a greater number of parallel tasks to be
generated than the other methods and would most likely exhibit the greatest speedup.

6. Summary and Conclusions

In this paper, two approaches for achieving effective parallelization for dynamic sim-
ulation on a general-purpose parallel computer were presented. One approach that was
discussed in [1] for parallel simulation of a single chain system was based on temporal par-
allelism achieved with the use of a parallel numerical integration method. In this paper, the
work has been extended to include multiple chain systems which introduce a second form
of parallelism. Called spatial parallelism, the form comes from the ability to compute the
dynamics of individual chains in the system simultaneously.

Various ways to use both forms of parallelism to the greatest advantage were investi-
gated. The greatest effective speedup from these methods was gained by partitioning the
computation into as many load balanced parallel tasks as possible while using the integra-
tion method with the smallest block size. This implies that the greatest amount of spatial
parallelism, and the most accurate integration methods should be employed.

With the general rule in mind, our results for the simulation of a four chain system
showed that the greatest speedup on four processors of the CRAY Y-MP8 was 3.1. This
was achieved with spatial parallelism only, and the use of the serial predictor-corrector
integration method. Even greater speedup was achieved on eight processors when full
spatial parallelism was used. In this case, a two-point parallel integration method was
used to achieve the desired amount of paralle] tasks. And it appears that the four-point
integration method would be beneficial if sixteen processors are available.

An additional benefit to these forms of parallelism is that they do not preclude any of
the previous work mentioned in the introduction that dealt with the fine-grain parallel algo-
rithms for computation of the robot dynamics quantities. The special-purpose architectures
required could be set up in paralle] and used in conjunction with the methods discussed
in this paper. The resulting combination of parallel computation could be thought of as
occurring in three dimensions, and shows promise for even greater speedups.

280

7. References

[1] S. McMillan, D. E. Orin, and P. Sadayappan, “Towards Super-Real-Time Simulation
of Robotic Mechanisms Using a Parallel Integration Method,” JEEE Transactions on
Systems, Man, and Cybernetics, January/February 1992.

[2] L. Conway, R. Volz, and M. Walker, “Tele-Autonomous Systems: Methods and Archi-
tectures for Intermingling Autonomous and Telerobotic Technology,” in Proc. of 1987
IEEE Int. Conf. on Robotics and Automation, (Raleigh, NC), pp. 1121-1130, 1987.

[3] D.E. Orin, “Dynamical Modelling of Coordinated Multiple Robot Systems,” in Report
of Workshop on Coordinated Multiple Robot Manipulators (A. J. Koivo and G. A.
Bekey, eds.), (San Diego, CA), Jan. 1987.

[4] M. Amin-Javaheri and D. E. Orin, “Systolic Architectures for the Manipulator Iner-
tia Matrix,” IEEE Trans. on Systems, Man, and Cybernetics, vol. 18, pp. 939-951,
November/December 1988.

[5] C.S. G. Lee and P. R. Chang, “Efficient Parallel Algorithms for Robot Forward Dy-
namics Computation,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 18,
pp- 238-251, March/April 1988.

[6] P. Sadayappan, Y. L. C. Ling, K. W. Olson, and D. E. Orin, “A Restructurable
VLSI Robotics Vector Processor Architecture for Real-Time Control,” IEEFE Trans.
on Robotics and Automation, vol. 5, pp. 583 — 599, October 1989.

(7] A. Fijany and A. K. Bejczy, “Techniques for Parallel Computation of Mechanical
Manipulator Dynamics. Part II: Forward Dynamics,” Control and Dynamic Systems,
vol. 40, pp. 357-410, 1991.

[8] C.L. Chen, C.S. G.Lee, and E. S. H. Hou, “Efficient Scheduling Algorithms for Robot
Inverse Dynamics Computation on a Multiprocessor System,” in IEEE Int. Conf. on
Robotics and Automation, (Philadelphia, PA), pp. 1146-1151, 1988.

[9] J. Y. S. Luh and C. S. Lin, “Scheduling of Parallel Computation for a Computer-
Controlled Mechanical Manipulator,” IEEE Transactions on Systems, Man, and (C'y-
bernetics, vol. SMC-12, pp. 214 — 234, March/April 1982.

[10] K. W. Lilly and D. E. Orin, “Efficient Dynamic Simulation for Multiple Chain Robotic
Mechanisms,” in Proc. 3rd Annual Conf. on Aerospace Computational Control (D. E.
Bernard and G. K. Man, ed.), vol. 1, (Pasadena, CA), pp. 73-87, December 1989.

[11] O. Khatib, “A Unified Approach for Motion and Force Control of Robot Manipula-
tors: The Operational Space Formulation,” IEEE Journal of Robotics and Automation,
vol. RA-3, pp. 43-53, February 1987.

[12] K. W. Lilly and D. E. Orin, “Alternate Formulations for the Manipulator Inertia
Matrix,” The International Journal of Robotics Research, The MIT Press, vol. 10,
pp. 64-74, February 1991.

[13] L. G. Birta and O. Abou-Rabia, “Parallel Block Predictor-Corrector Methods for
ODE’s,” IEEE Trans. on Computers, vol. C-36, pp. 299-311, March 1987.

281

8£120 YW ‘ebplaquied
ONUBAY syaIsnyoesse €0l
*oU| ‘S9)eI00SSY Yd1easay uojoyd

kel

2661 ‘61-L1 Isnbny
elulojle) ‘eleqieqg ejueg

joJju0) jeuonjeindwo) aoedsolay
uo
doysiiom @oa/4SN/VSVYN
jenuuy yiid
Jjauiny "g sewep pue unyd ‘N UOH

283

SAILITIgGVdVO SISATVNY
SOINVYNAQ AQOTILTNIN 40 MIIAHIANO

PRECEDING PAGE BLANK NOT FHL.MED

SO9NSS| paAjosalun .
|

| sanijqedes juaniny .

284

SOOUBAPY JUSJDY
suoiljoelaju] olweulhg

MBIAIBAQ |EJLIOISIH

“Ju| ‘SOIRIIOSSY YIIRESIY UOIOUd

M3IAH3IAO NOILVINIS3Hd &bl

suoljenb3 o1joqwAs
siaindwon |9jjeled
swyjobly 1sed

|

SjuloOf jelaudy) pue saueaqi ulop
suoljejnw.io4 snotep
UOIJON A€ ® dc
salbojodo} doo » 9all

/N

285

SJUIOr |BldUdY) salielqi uior
suoljenb3g 19|n3/uoimaN suoljenb3 ueibueiber
UOIIOIN d¢g UOIION dc
ABojodo] sau] ABojodo) doon
14vdO30VdS SINSINVHO3IN

*ou] 'salRI0SSY Ydieesay uoloud

MIING3AO0 TVIOIHOLSIH e LY Y

‘SW8lsSAs
Apoqginw 1o} uonow jo suolenba Jo juswdojeaap oy} palalso) sadiasp abueyoxa wnjuswow
pue juaipeib-Anaeib Buisn ‘spnujie 9/s JO |0JJUOD pue uoljeZIIgelS Ul }Salajul aoedsolay

A
S3HNLONYLSENS Ad31lvinodliLydy
SAVH4HY dV10S
S30DIA3A IONVYHOX3
WNLNIWNOIN 40 S1HVd ONINNIAS 2
ALIX3TdINOD
ONISVIHONI SH3dINVA NOILVINN
A

SINOO8Y LN3IAVHD ALIAVHD

14dvHO30VdS

*3U) 'S9|e]0SSY YIIBasIH LUOIOYUY

ALIX3T1dINOD 14VHO3IOVdS —~fEheh

s19]009 d1uaboAl) Buiooq

UOIJON INBUO.IISY jewiayyl
saoinag Buluuidg yso|sS pinj4 - sajueqinisig pieog-uQ o
Buidnoo xald/pibiy -
(uonejou
jajawolpes ‘uue joje|ndiuew "6-9) uonow julor &
jusawAhojdaqg jewayl uoneiqin
JaAnaue jeondo jeinionais

(s1or seH ‘s|eaym ‘s19isniyl) apnuny

alaydsowny sawnjd
STV :3]5) onaubepy 1ejos jewsay L

- |OJJUO0D IBAIY .

- |ejudwuoJdiAuUg

*2u] '$0IRI208SY |2IvesoY uoloud

SNOILOVHALNI DINVNAQ —~ S Eheh

288

sajgewnsuo) jo uonajdag

abeweq/bulby

(abueysp Auonsels

pue yibua) uswdhojdag
MO|d SSeIN - s19joweled walsAs buibueyn .

*au} 'SINVO0SSY Y2uiLesaY UOIOY

(A.LNOD) SNOILOVHILNI DINVYNAQ —~isEked

NOILVZIHVINIT JAISHNO3Y - SISATVNY ALIAILISNIS
S13AON LOVdNI FTdNIS -

| JOVINOD
A1dILTNN ‘ALITIGIX3Td LNIOP ‘SAONVHVYI1O - ST3AOW LNIOr

LINIJWNNOHYIANI NOILVINNIS 13AIFT-HOIH -

S3ADV4HILNI TVOIHAVHYD ATAN3IH4-H3ISN -

289

NOILVININHGOd DITOEINAS -
ONISS3O0Hdd 13aT11vdvd -

SdN-d33dS JINHLIHOO1VY
"H3IHLO ® SWHLIHODTV IWIL-TVIYH ‘SWHLIHODV (N) H3gHo -

U] ‘$INRID0SSY YdJeesay uoloud

S3dONVAQYVY LN3O34d —~fEhch

290

NOILVOIdIdaA -
S3dVHS 3dON LNINOdINOD -

(SNOILO3HHOD HAAHO L1SHId) DNINI4HILS OIHLaInoIn -

R MR

U] ‘saB100SSY YIieesey uoloud

(d.LNOD) S3IONVAQV LN3D3Y bl

OHNIM3AOW
1Vv3HHL aNV ‘advog-NO
“IVLNIWNOHIANTI HOd a3033N

ONILVIH LNIISNVHL1-Aidvd ON JLLV1S-ISVNO IVINHIHL
H3ASN A8 SLNdNI TVHIN3IO ,
3YVYMLI0S SISATYNVY/NDIS3A
JOHLNOD HLIM S3OV4HILNI SWHLIHODTV TVHIN3D TJOHLINOD
SWHLIHODTV TVILNIND3S a3Linge IN3INAOIdAA

NOLLVTINWYHOL 3STNdNI
W37804Hd HOHV3S3d

INON - J18IX3d

Q3L - IO |

L1OVdWI DONIMDO0d

S13and 31avaN3adx3 ol ANa
SIHNVHO VILHINI ANV SSVIN ON
S3IONIND3Hd ANV

S3dVHS JA0ON DNIAHVA-INIL ON

INVLSNOOD

291

SHALIWVHVd WILSAS

SNOILO3143a JILSV13 TIVINS

avd HO “IVIOILATVNY
‘INIWI13 31INID WOYS

ST3AON TVHNLONYHLS

NOLLYHINID 3a00 OIMTOGNAS
DNISS3D0dd 13T11vdvd
SWH1IHODTV 1Sv4d

ANVIA

S31009 40 H38WNN

SIN3IWNOD

ALNigvdvo

SISATVNV

S3LLI11gvdvO LN3IHHNO

*ou) 'SIID0SSY YIIReseY uoloud

“ifthel

73AOW Ol 11n2did4ia
3ON3AN3d3A IHNLVHIdWEL
GNV NIVHlS ‘ADN3IND3HL
DNM3IAOW 1234Ia

3HOW V 3AIAOHd S13AO0W 3ad
OldOL HOHV3IS3Y LN3IHYND

V Sl IVIHILVYIN DILSVII0OSIA
HO4 DNIM3AOW LNIW313 3LINI4

(sdvHY3d S3Q02
AHV131HdOHd ISNOH-NI) INON

ONIdWVA 3AISSvd

15349 ONINM3aOon 3ad
JHVYMAHVH H31NdWOD

ANV SIWHLIHODTV NI S3ONVAQY
HLIM AVMYV 0D AVIN W31804Hd
a3yino3yd

292

S1300W 394V AT3ALLIGIHOHd 3NON ST3AON NOILOW 3IAVM
HL1lIM Tv3d Ol 11NJi441d

S3HNLONYLS A3LVNINOG-LNIOP ST13A0ON

ATLN3O3H INOQ MHOM HONW a3Lnn ANIOI HVINITNON

TOHLNOD ANV DNISN3S

OldOL HOHVIS3H INON | H313WvHvd a31NgiyLsia

ST13AdON
1N3W3IONIdINI SWNTd ON
S713d0N NOlLvIavd HV10S ON

S73dO0NW IHIHdSOWLY IT1dNIS
an3id JIL3INOVIA
IN3IQVHO ALIAVHO

S3AONVEHNLsSIa
TVLINIWNOYHIANI

U] "SAIV0SSY UIIRESIH LOloUd

(Q.1LNOD) s3ILINIgvdVyd LNIdHnND —isEked

SNOILLONNA H34SNVYL
SINTVANIOIT WILSAS
N9IS3A TOHLNOD

INIOd ODNILVH3IdO
a31d103ds Lnoav a3Lndwood

NOILVZIHV3INI

SH3L3NWVHVd
INTLSAS ONIZIWILJO NI d13H

ALIALLISNAS NOIS3A

S30H04
LINIVHLSNOD HO ‘a3iNddv
“IVLLH3NI OL 3NA SAVO1 3DHVY1
S3LVH HVINONVY HOIH

ONIN3I44ILS JIHL3IN03ID

293

SW31SAS avO1 HOIH

SOILVININIY Q3ZNnvid3adsS
S3A0V4HI1NI
AAN3IH4-43SN a3zZrnvido3ads

S3TOIH3A Tivd
SOINVHO3NOIg

SNOILLVDI1ddV 1VIO3dS

HSO1S ainid

S73a0OW WNTNAN3d T1dWIS

NOILOVHILNI
AVOINVHO3IW-AINd

*0U| *SAIRID0SSY YII8eseY UoJoUd

(.LNOD) S3i1L11gvdvo INIHHND —wisthel

ST3dON
ONITMONE ANV NOILVINHO43a JI1LSV1d ‘SOINVNAQ LOVdWNI -

S3IONINOD3IH4 ANV SIdVHS
dAON DNIDNVHO ‘MOTd SSYIN HLIM SOINVNAQ LNIWAO1dIa -

TVINHIHL 'SAIN1d - S3A00 H3IHLO HLIM SNOILOINNOODHILNI -

(ALITV3Y TVNLYHIA ‘SOIHAVHYD) 3OV4HILNI H3sn -«

294

AON3IDIdd3 TVYNOILVINdNOD -
NOILVZIH31OVHVHOD LNIOr 431139 -

NOILVOIdIH3A SSOHO ANV NOILVAITVA TVLINIWIHIdX3 -

*3Uf 'SI]B|O0SSY YIivasey uolold

MHOM JHNLNZA/SANSSI AIATOSIUNN ~sEhed

AHO103rvdl NIvid3d0
VY MOT104d Ol SIODVIUNIT NDIS3A - SISTHLNAS JILVINENIA

295

SIN3LSAS AQOdILTNI 3191X3174 4O TOHLNOD -
NOILVOIdILNIAl NJLSAS

‘013 ‘VILHINI ‘SSYIN ‘SNOISNIWIA IOVINIT
‘“TOHLNOD 40 NOILVZINILAO HO4 SISATVYNV ALIAILISNIS

(a.1NO9D) wareomsonny o s
MHOM FHNLN4/SINSSI AIATOSIUNN —~sEkch

